根号(a1+b1)^2+(a2+b2)^2+.+(an+bn)^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/07 20:48:06
根号(a1+b1)^2+(a2+b2)^2+.+(an+bn)^2

根号(a1+b1)^2+(a2+b2)^2+.+(an+bn)^2
根号(a1+b1)^2+(a2+b2)^2+.+(an+bn)^2

根号(a1+b1)^2+(a2+b2)^2+.+(an+bn)^2
原不等式为:√[(a1+b1)²+(a2+b2)²+.+(an+bn)²]≤√(a1²+a2²+.an²)+√(b1²+b2²+.bn²)
左右两边非负,且左边根号内的内容也非负,故两边同时平方,原不等式即证:
(a1+b1)²+(a2+b2)²+.+(an+bn)²≤(a1²+a2²+.an²)+(b1²+b2²+.bn²)+2√[(a1²+a2²+.an²)·(b1²+b2²+.bn²)]
即证:
(a1²+a2²+.an²)+(b1²+b2²+.bn²)+(2a1·b1+2a2·b2+…+2an·bn)≤(a1²+a2²+.an²)+(b1²+b2²+.bn²)+2√[(a1²+a2²+.an²)(b1²+b2²+.bn²)]
即证:
(a1·b1+a2·b2+…+an·bn)≤√[(a1²+a2²+.an²)(b1²+b2²+.bn²)]
即证:
(a1·b1+a2·b2+…+an·bn)²≤(a1²+a2²+.an²)(b1²+b2²+.bn²)
根据柯西不等式,上式显然成立.

数学归纳法,好像能证明

左边平方=(a1+b1)^2+(a2+b2)^2+......+(an+bn)^2
=a1^2+a2^2+....an^2+b1^2+b2^2+......bn^2+2倍(a1b1+a2b2....anbn)
右边平方=a1^2+a2^2+....an^2+b1^2+b2^2+......bn^2+2倍根号(a1^2+a2^2+....an^2)*(b1...

全部展开

左边平方=(a1+b1)^2+(a2+b2)^2+......+(an+bn)^2
=a1^2+a2^2+....an^2+b1^2+b2^2+......bn^2+2倍(a1b1+a2b2....anbn)
右边平方=a1^2+a2^2+....an^2+b1^2+b2^2+......bn^2+2倍根号(a1^2+a2^2+....an^2)*(b1^2+b2^2+......bn^2)
∴即证:a1b1+a2b2....anbn≤ 根号(a1^2+a2^2+....an^2)*(b1^2+b2^2+......bn^2)
∴即证:(a1b1+a2b2....anbn)^2≤ (a1^2+a2^2+....an^2)*(b1^2+b2^2+......bn^2)
【这是典型的 柯西不等式 显然成立】
柯西不等式的证明如下:
(a12+a22+a32+…+an2)(b12+b22+b32+…+bn2)≥(a1b1+a2b2+a3b3+…+anbn)2
当且仅当a1/b1=a2/b2=a3/b3=…=an/bn时等号成立
设n=k时该不等式成立,则有
(a12+a22+a32+…+ak2)(b12+b22+b32+…+bk2)≥(a1b1+a2b2+a3b3+…+akbk)2
当且仅当a1/b1=a2/b2=a3/b3=…=ak/bk时等号成立
则当n=k+1时,不等式应为:
(a12+a22+a32+…+ak+12)(b12+b22+b32+…+bk+12)≥(a1b1+a2b2+a3b3+…+ak+1bk+1)2
当且仅当a1/b1=a2/b2=a3/b3=…=ak+1/bk+1时等号成立
此不等式即:
[(a12+a22+a32+…+ak2)+ak+12][(b12+b22+b32+…+bk2)+bk+12]≥[(a1b1+a2b2+a3b3+…+akbk)+ak+1bk+1]2
(a12+a22+a32+…+ak2)(b12+b22+b32+…+bk2)
+ak+12(b12+b22+b32+…+bk2)+bk+12(a12+a22+a32+…+ak2)
+ak+12bk+12≥(a1b1+a2b2+a3b3+…+akbk)2+ak+12bk+12+2ak+1bk+1(a1b1+a2b2+a3b3+…+akbk)
因为已有
(a12+a22+a32+…+ak+12)(b12+b22+b32+…+bk+12)≥(a1b1+a2b2+a3b3+…+ak+1bk+1)2
所以只须证
ak+12(b12+b22+b32+…+bk2)+bk+12(a12+a22+a32+…+ak2)+ak+12bk+12≥ak+12bk+12+2ak+1bk+1(a1b1+a2b2+a3b3+…+akbk)

ak+12(b12+b22+b32+…+bk2)+bk+12(a12+a22+a32+…+ak2)≥2ak+1bk+1(a1b1+a2b2+a3b3+…+akbk)
ak+12b12+ak+12b22+ak+12b32+…+ak+12bk2
+bk+12a12+bk+12a22+bk+12a32+…+bk+12ak2≥2ak+1bk+1a1b1+2ak+1bk+1a2b2+2ak+1bk+1a3b3+…+2ak+1bk+1akbk
ak+12b12+bk+12a12+ak+12b22+bk+12a22+ak+12b32+bk+12a32+…+ak+12bk2+bk+12ak2
≥2(ak+1b1)(bk+1a1)+2(ak+1b2)(bk+1a2)+2(ak+1b3)(bk+1a3)+…+2(ak+1bk)(bk+1ak)
ak+12b12+bk+12a12+ak+12b22+bk+12a22+ak+12b32+bk+12a32+…+ak+12bk2+bk+12ak2
-2(ak+1b1)(bk+1a1)-2(ak+1b2)(bk+1a2)-2(ak+1b3)(bk+1a3)-…-2(ak+1bk)(bk+1ak)≥0
[ak+12b12-2(ak+1b1)(bk+1a1)+bk+12a12]+[ak+12b22-2(ak+1b2)(bk+1a2)+bk+12a22]+…+[ak+12bk2-2(ak+1bk)(bk+1ak)+bk+12ak2]≥0
(ak+1b1-bk+1a1)2+(ak+1b2-bk+1a2)2+…+(ak+1bk-bk+1ak)2≥0
显然,若干实数的平方和一定为非复数
若等号成立,则
ak+1b1-bk+1a1=0
ak+1b2-bk+1a2=0
……
ak+1bk-bk+1ak=0
得a1/b1=a2/b2=a3/b3=…=ak+1/bk+1
所以,若柯西不等式在n=k时成立,在n=k+1时也成立
若n=1,则不等式变为
a12b12≥(a1b1)2
显然成立,所以对于n取的一切正整数,柯西不等式都成立
证明完毕,得:
柯西不等式
(a12+a22+a32+…+an2)(b12+b22+b32+…+bn2)≥(a1b1+a2b2+a3b3+…+anbn)2
当且仅当a1/b1=a2/b2=a3/b3=…=an/bn时等号成立

收起

要证原不等式成立,只需证明(a1+b1)^2+(a2+b2)^2+......+(an+bn)^2<=(a1^2+a2^2+....an^2)+(b1^2+b2^2+......bn^2)+2√(a1^2+a2^2+....an^2)√(b1^2+b2^2+......bn^2),即证a1b1+a2b2+……+anbn≤√(a1^2+a2^2+....an^2)√(b1^2+b2^2+.........

全部展开

要证原不等式成立,只需证明(a1+b1)^2+(a2+b2)^2+......+(an+bn)^2<=(a1^2+a2^2+....an^2)+(b1^2+b2^2+......bn^2)+2√(a1^2+a2^2+....an^2)√(b1^2+b2^2+......bn^2),即证a1b1+a2b2+……+anbn≤√(a1^2+a2^2+....an^2)√(b1^2+b2^2+......bn^2)。设x是任意实数,则有(a1+xb1)²+(a2+xb2)²+……+(an+xbn)²≥0。即(b1²+b2²+……bn²)x²+2(a1b1+a2b2+……+anbn)x+(a1²+a2²+……+an²)≥0。由于上式对任意x都成立,所以判别式△=4(a1b1+a2b2+……+anbn)²-4(a1²+a2²+……+an²)(b1²+b2²+……bn²)≤0,即|a1b1+a2b2+……+anbn|≤√(a1²+a2²+……+an²)√(b1²+b2²+……bn²),所以a1b1+a2b2+……+anbn≤√(a1^2+a2^2+....an^2)√(b1^2+b2^2+......bn^2),故原不等式成立。

收起