韦达定理定理的背景及发展字数越多越好,每500字,

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 13:04:42
韦达定理定理的背景及发展字数越多越好,每500字,

韦达定理定理的背景及发展字数越多越好,每500字,
韦达定理定理的背景及发展
字数越多越好,每500字,

韦达定理定理的背景及发展字数越多越好,每500字,
韦达定理 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理.历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性.由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根.因此,该方程的左端可以在复数范围内分解成一次因式的乘积:其中是该方程的个根.两端比较系数即得韦达定理.韦达定理 AX2+BX+C=0 X1和X2为方程的两个跟 则X1+X2=-B/A X1*X2=C/A 韦达定理应用中的一个技巧 在解有关一元二次方程整数根问题时,若将韦达定理与分解式αβ±(α+β)+1=(α±1)(β±1)结合起来,往往解法新颖、巧妙、别具一格.例说如下. 例1 已知p+q=198,求方程x2+px+q=0的整数根. (’94祖冲之杯数学邀请赛试题) 设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得 x1+x2=-p,x1x2=q. 于是x1x2-(x1+x2)=p+q=198,即x1x2-x1-x2+1=199. ∴(x1-1)(x2-1)=199. 注意到x1-1、x2-1均为整数,解得x1=2,x2=200;x1=-198,x2=0. 例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值. 设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得 x1+x2=12-m,x1x2=m-1. 于是x1x2+x1+x2=11,即(x1+1)(x2+1)=12. ∵x1、x2为正整数,解得x1=1,x2=5;x1=2,x2=3. 故有m=6或7. 例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数. 若k=0,得x=1,即k=0符合要求. 若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得 ∴x1x2-x1-x2=2,(x1-1)(x2-1)=3. 因为x1-1、x2-1均为整数,所以 例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1. (97四川省初中数学竞赛试题) 证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得 α+β=p,αβ=-q. 于是p+q=α+β-αβ,=-(αβ-α-β+1)+1 =-(α-1)(β-1)+1>1(因α>1>β).比较全了吧

韦达定律介绍
英文名称:Viete theorem 韦达定理说明一元二次方程两根之间的关系. 一元二次方程ax²+bx+c=0中,两根X1,X2有如下关系:x1+x2=-b/a , x1*x2=c/a
韦达定理(Vieta's Theorem)的内容
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X...

全部展开

韦达定律介绍
英文名称:Viete theorem 韦达定理说明一元二次方程两根之间的关系. 一元二次方程ax²+bx+c=0中,两根X1,X2有如下关系:x1+x2=-b/a , x1*x2=c/a
韦达定理(Vieta's Theorem)的内容
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1*X2=c/a 用韦达定理判断方程的根 若b^2-4ac>0 则方程有两个不相等的实数根 若b^2-4ac=0 则方程有两个相等的实数根 若b^2-4ac<0 则方程没有实数解
[编辑本段]韦达定理的推广
韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0 它的根记作X1,X2…,Xn 我们有 ∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ∏Xi=(-1)^n*A(0)/A(n) 其中∑是求和,∏是求积。 如果一元二次方程 在复数集中的根是,那么 由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 韦达定理在方程论中有着广泛的应用。
[编辑本段]韦达定理的证明
一元二次方程求根公式为: x=(-b±√b²-4ac)/2a 则x1=(-b+√b²-4ac)/2a,x2=(-b-√b²-4ac)/2a x1+x2=(-b+√b²-4ac/2a)+(-b-√b²-4ac/2a) x1+x2=-b/a x1*x2=(-b+√b²-4ac/2a)*(-b-√b²-4ac/2a) x1*x2=c/a
[编辑本段]韦达定理推广的证明
设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。 则有:An(x-x1)(x-x2)……(x-xn)=0 所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理) 通过系数对比可得: A(n-1)=-An(∑xi) A(n-2)=An(∑xixj) … A0==(-1)^n*An*∏Xi 所以:∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ∏Xi=(-1)^n*A(0)/A(n) 其中∑是求和,∏是求积。
有关韦达定理的经典例题
例1 已知p+q=198,求方程x2+px+q=0的整数根. (’94祖冲之杯数学邀请赛试题) 设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得 x1+x2=-p,x1x2=q. 于是x1x2-(x1+x2)=p+q=198, 即x1x2-x1-x2+1=199. ∴(x1-1)(x2-1)=199. 注意到x1-1、x2-1均为整数, 解得x1=2,x2=200;x1=-198,x2=0. 例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值. 设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得 x1+x2=12-m,x1x2=m-1. 于是x1x2+x1+x2=11, 即(x1+1)(x2+1)=12. ∵x1、x2为正整数, 解得x1=1,x2=5;x1=2,x2=3. 故有m=6或7. 例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数. 若k=0,得x=1,即k=0符合要求. 若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得 ∴x1x2-x1-x2=2, (x1-1)(x2-1)=3. 因为x1-1、x2-1均为整数,所以 例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1. (’97四川省初中数学竞赛试题) 证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得 α+β=p,αβ=-q. 于是p+q=α+β-αβ, =-(αβ-α-β+1)+1 =-(α-1)(β-1)+1>1(因α>1>β).

收起

韦达定理(Vieta's Theorem)的内容
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
用韦达定理判断方程的根
若b^2-4ac>0 则方程有两个不相等的实数根
若b^2-4ac=0 则方程有两个相...

全部展开

韦达定理(Vieta's Theorem)的内容
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
用韦达定理判断方程的根
若b^2-4ac>0 则方程有两个不相等的实数根
若b^2-4ac=0 则方程有两个相等的实数根
若b^2-4ac<0 则方程没有实数解
韦达定理的推广
韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0
它的根记作X1,X2…,Xn
我们有 ∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n) … ∏Xi=(-1)^n*A(0)/A(n) 其中∑是求和,∏是求积。 如果一元二次方程 在复数集中的根是,那么 由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 韦达定理在方程论中有着广泛的应用。
韦达定理的证明
一元二次方程求根公式为: x=(-b±√b²-4ac)/2a 则x1=(-b+√b²-4ac)/2a,x2=(-b-√b²-4ac)/2a x1+x2=(-b+√b²-4ac/2a)+(-b-√b²-4ac/2a) x1+x2=-b/a x1*x2=(-b+√b²-4ac/2a)*(-b-√b²-4ac/2a) x1*x2=c/a
韦达定理推广的证明
设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。 则有:An(x-x1)(x-x2)……(x-xn)=0 所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理) 通过系数对比可得: A(n-1)=-An(∑xi) A(n-2)=An(∑xixj) … A0==(-1)^n*An*∏Xi 所以:∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ∏Xi=(-1)^n*A(0)/A(n) 其中∑是求和,∏是求积。
有关韦达定理的经典例题
例1 已知p+q=198,求方程x2+px+q=0的整数根. (’94祖冲之杯数学邀请赛试题) 设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得 x1+x2=-p,x1x2=q. 于是x1x2-(x1+x2)=p+q=198, 即x1x2-x1-x2+1=199. ∴(x1-1)(x2-1)=199. 注意到x1-1、x2-1均为整数, 解得x1=2,x2=200;x1=-198,x2=0. 例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值. 设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得 x1+x2=12-m,x1x2=m-1. 于是x1x2+x1+x2=11, 即(x1+1)(x2+1)=12. ∵x1、x2为正整数, 解得x1=1,x2=5;x1=2,x2=3. 故有m=6或7. 例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数. 若k=0,得x=1,即k=0符合要求. 若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得 ∴x1x2-x1-x2=2, (x1-1)(x2-1)=3. 因为x1-1、x2-1均为整数,所以 例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1. (’97四川省初中数学竞赛试题) 证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得 α+β=p,αβ=-q. 于是p+q=α+β-αβ, =-(αβ-α-β+1)+1 =-(α-1)(β-1)+1>1(因α>1>β).

收起

http://baike.baidu.com/view/1166.htm?fr=ala0_1_1